Browsing by Author "Goh, Eg Su"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemEnhanced device-based 3d object manipulation technique for handheld mobile augmented reality(Universiti Teknologi Malaysia, 2019) Goh, Eg Su3D object manipulation is one of the most important tasks for handheld mobile Augmented Reality (AR) towards its practical potential, especially for realworld assembly support. In this context, techniques used to manipulate 3D object is an important research area. Therefore, this study developed an improved devicebased interaction technique within handheld mobile AR interfaces to solve the largerange 3D object rotation problem as well as issues related to 3D object position and orientation deviations in manipulating 3D object. The research firstly enhanced the existing device-based 3D object rotation technique with an innovative control structure that utilizes the handheld mobile device tilting and skewing amplitudes to determine the rotation axes and directions of the 3D object. Whenever the device is tilted or skewed exceeding the threshold values of the amplitudes, the 3D object rotation will start continuously with a pre-defined angular speed per second to prevent over-rotation of the handheld mobile device. This over-rotation is a common occurrence when using the existing technique to perform large-range 3D object rotations. The problem of over-rotation of the handheld mobile device needs to be solved since it causes a 3D object registration error and a 3D object display issue where the 3D object does not appear consistent within the user’s range of view. Secondly, restructuring the existing device-based 3D object manipulation technique was done by separating the degrees of freedom (DOF) of the 3D object translation and rotation to prevent the 3D object position and orientation deviations caused by the DOF integration that utilizes the same control structure for both tasks. Next, an improved device-based interaction technique, with better performance on task completion time for 3D object rotation unilaterally and 3D object manipulation comprehensively within handheld mobile AR interfaces was developed. A pilot test was carried out before other main tests to determine several pre-defined values designed in the control structure of the proposed 3D object rotation technique. A series of 3D object rotation and manipulation tasks was designed and developed as separate experimental tasks to benchmark both the proposed 3D object rotation and manipulation techniques with existing ones on task completion time (s). Two different groups of participants aged 19-24 years old were selected for both experiments, with each group consisting sixteen participants. Each participant had to complete twelve trials, which came to a total 192 trials per experiment for all the participants. Repeated measure analysis was used to analyze the data. The results obtained have statistically proven that the developed 3D object rotation technique markedly outpaced existing technique with significant shorter task completion times of 2.04s shorter on easy tasks and 3.09s shorter on hard tasks after comparing the mean times upon all successful trials. On the other hand, for the failed trials, the 3D object rotation technique was 4.99% more accurate on easy tasks and 1.78% more accurate on hard tasks in comparison to the existing technique. Similar results were also extended to 3D object manipulation tasks with an overall 9.529s significant shorter task completion time of the proposed manipulation technique as compared to the existing technique. Based on the findings, an improved device-based interaction technique has been successfully developed to address the insufficient functionalities of the current technique.