Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of UTM Open Science
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Taib, Ishkrizat"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Improvement of haemodynamic stent strut configuration for patent ductus arteriosus through computational modelling
    (Universiti Teknologi Malaysia, 2016) Taib, Ishkrizat
    Currently, the treatment of Patent Ductus Arteriosus (PDA) by the implantation of coronary stent has resulted in severe hemodynamic complications. There is thus a need to customize and improve current stent geometry specific to PDA to overcome this problem. Computational Fluid Dynamics (CFD) approaches, verified by an experimental technique are used to analyze current stent strut configurations. Statistical analysis is used to rank the parameter performance and to obtain the best stent configuration. The most favorable configuration is then used to design new stent strut configuration specific for PDA. In the analysis of the new stent design, CFD results show low possibility of re-stenosis process due to thrombosis formation, inflammation, and neo-intimal hyperplasia. Furthermore, comprehensive CFD analysis by solving fluid-structure interaction (FSI) cases has produced an optimum stent strut configuration that is structurally sound. The strength of stent strut configuration due to hemodynamic effect is analyzed through the Von Misses stress distribution. The results show that the new improved design of stent strut configuration has excellent hemodynamic performance. Finally, the new stent design is predicted to be able to overcome hemodynamic complications and stent structural failure when applied specifically to PDA
  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback